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5&, Abstract

This paper describes a Monte Carlo method based on the theory of

quasirandom points for estimating the distribution functions and means of

network c;iﬁletion time and shortest path time in a stochastic activity
network. In particular, the method leads to estimators whose variances
converge faster than 1/K , where K denotes the number of replications
collected in the experiment. The paper demonstrates how accuracy diminishes
for a given K with increasing dimensionality of the network and shows how a
procedure that uses{a'cg;set of the network together with convolution can
reduce dimensionality and increase accuracy. Two examples illustrate the

benefits of using quasirandom points together with a cutset and then

convolution.
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Introduction

Activity network analysis is a fairly standard tool in Operations
Research. When arc completion times in such a network are deterministic,
well-established algorithms exist for finding its network completion time and
shortest path time in a computationally efficient manner. For example, see
3 Elmaghraby (1977) and Wagner (1975). However, when arc completion times are
o stochastic, analysis becomes considerably more difficult, even for relatively
il small networks. Here the objective often is to compute the distribution

functions (d.fs.) and means of network completion time and shortest path

time, given the d.fs. of the statistically independent individual arc
completion times.

Because severe difficulties exist in deriving analytical solutions to
these problems, many analysts have turned to Moante Carlo methods to derive
approximate gsolutions. Van Slyke (1963) proposes the use of importance
sampling to gain efficiency in estimating the characteristics of networks.
Martin (1965) describes how one can increase statistical efficiency when the
arc passage time distributions are polynomials. Burt and Garman (1971)

describe how conditional sampling can reduce dimensionality and thus sampling

variation. Carrying this idea one step further Sigal, Pritsker and Solberg
(1979, 1980) show how one can use a cutset of a network to effect similar

reductions. The use of antithetic variates has also been proposed in a number

of studies, including Cheng (1980), Sullivan, Hayya and Schaul (1982) and
Grant (1982).

Although the benefits of these proposals are well established,

they all lead to estimators with variances O(1/K) for K independent
replications. The present paper shows how to increase the rate of convergence

of this variance using quasirandom pbintl and 1{llustrates the success of the
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approach for two networks of N=8 and WN=18 arcs. The theory of quasirandom
points has its origin in the numerical evaluation of multivariable integrals.
The theory concerns the identification of vector sequences that when used in
numerical integration lead to approximations whose absolute errors coanverge to
zero faster than if independent random vectors were used. Since one can
represent the desired d.fs. and means as multivariable integrals, the appeal
of quasirandom points is apparent. Moreover, combining the use of
quasirandom points with other approaches such as cutsets and coauvolation

leads to even greater advantage, as we demonstrate.

Section 1 presents the stochastic network problem in detail. Section 2
describes how one can view the problem as one of multivariable numerical
integration. Section 3 describes how one would tackle the problem by crude
Monte Carlo methods and also describes the benefits of conditional sampling.
Section 4 shows the benefits of using cutsets. Section 5 then indicates how
cutsets together with coavolution can significantly reduce the dimensionality
of the problenm.

Section 6 presents a short discussion of the principal concepts of
multivariable numerical integration using quasirandom points and shows the
extent to which known results apply to the problem at hand. Section 7 lays
out an experiment whose design is used in Section 8 with two examples to show
the benefit of using quasirandom points, especially when combined with

convolution and the cutset approach.
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1. Definitions

Congider an acyclic directed network with a single source, single sink, N

arcse and L paths. Let X;,...,Xy , the passage times for arcs 1,...,N,

YrrFs

be independent random variables where X; has distribution function (d.f.) Fy

v Pl B
. Ve . .
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on [0,») and inverse distribution function Gi(u) = min[x: Fy(x) > u ,
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0 <u<1l). The completion time of path m {is

Tm = Jiay ata%1 = Jiel %t 1)
where ajp=1 1if arc 1 1{s on path m , ayn=0 otherwise and Ip denotes
the set of arcs on path m .

The principal purpose of this study is to characterize the network

completion time

T = max(Tp,...,T,) 2)
and the shortest path time
Ta = min('r].""bTL) * (3)

For T* , characterizations include:

a. pr(T* <t) 0<t<=

b. ET*

c. pr(m is the longest path) m=1l,...,L

d. pr(Ta < t) 0<t<m

e. E Ta

f. pr(m 1s the shortest path)" m=1,...,L .

The present study concerns the estimation of a, b, d and e . For expository
convenience the main body of the paper concerns the estimatton of pr(T* < t).

The Appendix contains details for the estimation of the remaining quantities.

....................
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L Let |Iy| denote the cardinality of In . If
i L
o N =ln=1 |Tnl (4)
. then no paths share a common arc and T™ and T+ have d.fs.
; x L 5
: PHE) = Ty Pr (V) 5)
iﬁ and
’ L
écﬁ Fa(t) = 1 ~ nm_l - Flm(t)] 0<t <™,
%? F7 being the convolution of the |Iy| arcs on path m . As an example,
i m
'jﬁ suppose that arc times are exponential with
& Fi(t) = 1 - eAst MO0 1elp . (6)
- Then one has for distinct Ag
» -t
- e
A Fp (¢) = 1 - L .
i 1 (7)
Usually the summation in (4) exceeds N 1in which case the derivations of
- F* and Fx are wmore complicated than in (5). In practice, even when (4)
:ﬁ ‘holds, the convolutions for F11'°"’PIL may prove too complex to derive
A analytically.
-

2. A Solution via Integration

An alternative approach to characterization is through integration; in

particular, numerical integration. Observe that one can write

F*(t) = E I[g,¢)(T™)

e Ry e ix) T Py (x4) (8a)
g nooo H l,oo., n 1-1 1 i a

-él...bflg(t:ul,u.,un) dul,'--."“N (8b)
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where

Ifa,b) (x) =1 ifa<x<hb
=0 otherwise,
N N
h(Esx1, e o0x0) = 1[0,¢) (wax(] _ ataxi,...,] . a11x¢)) (9a)
and
g(tjuy,...,uy) = h(t;61(uy),...,GN(uy)) - (9b)

Now (8b) involves multiple integration over the N-dimensional unit hypercube
[0,1)x...x[0,1) , hereafter denoted by N . It is the expression (9b) on
vwhich our analysis is based.

Counsider the approximation

1 ¢K .
gK(t) = i Zj-l g(t’ulj)"”unj) (10)

where uy = {uij; j=~1,2,...} 1=1,...,N are infinite sequences of points
in Uy chosen in one of several ways. One way is through pure random sampling

which we call the crude Monte Carlo method.

3. Crude Monte Carlo Sampling

Let
Tg = max (rjl,...,er) (11)
where
Tim = Ijay #tm Gtlugy) m=1,...,L (12)
and ugy 1=1,...,N j=1,...,K are i.1.d. from U[0,1) . Also define
83(t) = 8(tsu)4see,ug) = 1o, e)(T)) - (13)

Then gK(t) in (10) has expectation F*(t) and

* 1 - p*
var gK(t) - F (t)_%f Fre)) . (14)

A et - e s - I . el . § . e PO N

......... .




f
S

L2 B DAL S )
PR R
et S L

To improve on the result in (14), Burt and Garman (1971) introduce the
use of conditional sampling. Suppose that there exist arce 11,...,1p unique

to paths 1,...,L respectively. Assume that these arcs are distinct and

define
Sym = Jia; ata Givgy) (15)
1#1g
and
1
8j(t) = 0., Fig(t - Sjm) (16)

Now gx(t) in (10), based on (16), has the correct expectation F*(t) , as
can be seen by integrating (16) with respect to the joinf p-d.f. of
sjl""’st . But gK(t) has smaller variance than (14), as a result of
sampling from N-L instead of N arcs. Also note that
g4(t) < Ty PiaC®) an
provides an upper bound which also applies to EK(t).
In principle, conditional sampling can be made more effective by working

with subsets of arcs unique to each arc. Let

L
J#m
go that Jy 1s the set of arcs unique to path m . Assume |Jp| > 1

m=1,...,L and define
Sim = Xielm-JhaiﬂGi(“ij) (19)
and
L

g3(t) = Moy th(t‘sjn) (20)

where Fj denotes the d.f. of the sum of the passage times on the arcs unique
m

to path m . Since sampling in N+ L - J :-1'*“' dimensions is all that is

necesgsary, the use of (20) in (10) preserves unbiasedness and reduces variance

even further.
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In essence, the effect of conditional sampling 1is to replace the
coefficient of 1/K in (14) by one of smaller magnitude but in no way to
change the convergence rate with regard to K as K + @ , Also, note the
upper bound
L
n
. o

sj(t) < 1 FJm(t) (21)
which is tighter than the bound in (17).
4. Cutsets

In practice it 18 conceivable that at least one path does not have a

unique arc. That is, |Jy| = 0 for at least one path m . Figure 1

i{1llustrates such a case. Although conditional sampling as described by Burt

Ingert Fig. 1 about here.

and Garman does not apply here, another more general approach proposed by
Sigal, Pritsker and Solberg (1979, 1980) does. Let H denote a cutset of the
network. A cutset is a set of arcs that connects a set of nodes (I containing
the source with a set of nodes W containing the sink. Also, assume that
each path has only one arc in H . If each arc in H points from W to

W , H 1is called a uniformly directed cutset (UDC).

Define
Sim = i;’.l afm Gi(uiy) (22)
and i‘“
Y14 = sup (ajm Sim) 1elfl . (23)
m=l,...,L
Then define
gj(t) - niEH Fi(t - Yi.) . (24)

Now EK(t) in (10) basec = . 3) gives an unbiased estimate of F*(t)

R SR VALY, T Vol S e e e PP VPP
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with smaller variance than crude Monte Carlo sampling since one is sampling in
only N -|H| dimensions. Since a network may have more than one UDC, using

the one with maximal cardinality gives the greatest reduction in

dimensionality. However, the determination of this cutset for an arbitrarily
large network is not trivial, being an NP complete problem. Nevertheless,
among alternative known cutsets for a given network, the one with largest
cardinality serves our purpose best. As an example of the use of cutsets note
that (e2, e3, e;, e7) and (e3, es, eg, e7) are UDCs with maximal
cardinality 4 for the network of Fig. 1, whereas the cutset (e1, e2, e3)
with cardinality 3 1is not.

As a second example, consider the network in Fig. 2, taken from Battersby
(1970), which describes the steps encountered in the partial overhaul of a

unit {n an oil refinery. Table 1 shows the incidence matrix a = || ajy ||

Insert Fig. 2 about here.

for arcs (rows) and paths (columns). Observe that arcs (e, e3, es, eg, eg,
e10, e12) and arcs (e, e3, es, eg9, e10, €12, e15) form two UDCs with maximal
cardinality 7 . However, the cutset (e2, e3, es5, eg + eys, eg, ejg, €12) ,
formed by combining arcs eg and e15 (see Fig. 2) has cardinality 8 and

can be used to advantage to reduce dimensionality.

Insert Table 1 about here.

5. Further Dimensional Reduction

One can achieve at least one additional reduction fn the dimensionality
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j of sampling by exploiting available knowledge about a network. Let
E In=Ta-InNH (25)
5 where H denotes a UDC. Then define the subsets
r L r
Tag,eeopm, = Ny Ty - Xg,l LG ) Nyl (26)
sy r

1<m <m < ... <my €L; r=l,...,L .
Here Jhl""’mr denotes the subsgt of arcs, not in #H , that are uniquely on
paths My,eee,®, . Suppose there are q such nonempty sets Ri.---,ﬂq-
Let ng denote the d.f. of the sum of the |R;| arc passage times
corresponding to the arcs in Ry and let GRi denote the corresponding

inverse d.f. Then define

S = 1) (Tyepam) Gr U1y (27)
and
Yij = sup (S jm) 1=1,...,|H| (28)
m=1,...,L
and
83(t) = Mg, Fi(e - T1g) . (29)

Now, gx(t) 1in (10) based on (29) again is an unbiased estimator of
q
F*(t). However, since N - |H| + q - 21_1 IR;| dimensions arise for sampling

per replication, one anticipates that var Fg(t) has smaller magnitude than

i previously described methods produce. Note that this reduced dimensionality
comes from the use of UDCs together with coanvolution.

6. Multivariable Numerical Integration

As (8b) shows, one can view F*(t) as the result of a multivariable

integration over a restricted region in VN . We now describe how taking this

St e ; o e ol an SR AL an SN 1 o 2y




view of the problem leads to useful results when quasirandom points are used.
Our account follows Kuipers and Miederreiter (1974) and Niederreiter (1978).

Also see Schmidt (1973).

Suppose that our objective is to evaluate the integral

& 1 1

E{» B = 0!..0({ f(xl,oo.,xN) dxlo-.de (30)
9 by

b Bg = -11(2‘;_1 £Cuy 30e e e ptiyy) (31)

{ and to derive bounds on the error

& = |B - Bg| . (32)

Three definitions facilitate our description. Consider the sequences

{gj = (ulj’”"“Nj); j=1,...,K} .

Definition 1. A(R;K) = number of points uj,...,ugx that fall in RC Uy .

Definition 2. are uniformly distributed in Uy 1if

E‘l,...’}“‘x

1lim .A_(_RE.K_) = 1
K+ KA(R)

for all R = {(xl,...,xN): af < x§ < Bt i=1,...,N3} RCVUy and where
A(R) 18 the measure of volume of R in Uy .

Definition 3. The extreme discrepancy associated with a sequence Uyseee,Up

is
A(R*;K)
Dg = DR(u1,-+-»ug) = gup |—<'§—-k(?*)|
c Wy
where ® = {xyseeeyxy): 0 < x3 < By 1{=1,...,N} . Hereafter we assume

that {gd J=1,...,K} 1s a uniformly distributed sequence on Vy .
These definitions together with several fundamental theorems from the
theory of quasirandom points provide us with a way of charactertizing the

error (32). 1In particular,

. o s e T T e . e ‘ - .
P . - T st PR .. . LR - - " . N . - - . S
LTl T L 1
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!I Theorem 1 (Hlawka 1961). If f 41s of bounded variation in the sense of
li; Hardy and Krause, then
& < V(£,N)Dg (33)

where V(f,N) 1is a function of the bounded variation in f in N and lower
dimensions.
Theorem 2 (van Aardenne-Ehrenfest 1945). PFor any infinite sequence Wy,sUg,ees
with N >1

lim KDg = »
K®

Theorem 3 (Roth 1954) . For any sequence of K points in Yy with N > 2

(log K)(N-1)/2
<

where Cy 1is a function of N only.

C
Dg > N

Theorem 4 (Roth 1954) . For any infinite sequence in Vy with N > 1

ok ’ Cfi (log K)N/2
& Dk > 3

where C{ 1s a function of N only.

Theorem 1 shows that one can bound the error (32) by a quantity
proportional to the extreme discrepancy Dg , a most convenient result.
Theorem 2 implies that one cannot expect the extreme discrepancy to converge
as fast as 1/K . Theorems 3 and 4 provide lower bounds on how fast

convergence can occur.

We now describe a uniformly distributed sequence for which upper bounds

are known. If ‘R > 2 1s an integer, then every non-negative integer n has

2
BRI PSRN (NI
ARV Y IR

an expansion of the form
n= 2‘;_0 agri ag € {0,1,...,R-1} 34)

0<1<m and m = LloanJ .
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Corresponding to this expansion one has the radical inverse function

®(n) = Jjg air” (35)
We now define several sequences based on (34):

van der Corput Sequence: {¢2(3); j=0,1,...,K-1}

Hammersley Sequence: {hl(j),...,mn_l(j), -% : §=0,1,...,K-1}

where R},...,RK-1 are pairwise relatively prime.

Halton Sequence: {ml(j),...,mn(j); $=0,1,...,K-1}

where Rj,...,RN are pairwise relatively prime.
The van der Corput sequence is uniformly distributed on Vi and was the first
sequence of this kind proposed for univariate numerical integration. The
Hammersley and Halton sequences are uniformly distributed on Uy and as
Theorems 5 and 6 show they offer useful upper bounds.

Theorem 5 (Halton 1960). For the Hammersley sequence

(log K)N-1 -1 IRy-2
R (Tog 5, N> ngx By .

Theorem 6 (Halton 1960). For the Haltonm sequence

(log K)N 1 3Ri-2
Dr < R Moy (T rp) N> mgx By -

Several issues of significance need to be mentioned now. Firstly, since
the van der Corput, Hammersley and Halton sequences are deteraministic the
upper bounds can be interpreted as worst case bounds with certainty.
Secondly, although V(f,N) in (33) is in theory computable, in the present
case f 1is unknown. Thirdly, the bounds preseanted here hold for integration
the eatire N-dimensional hypercube; however, as (8a), (9a) and (9b) show, 6ur
problem calls for integration over a restricted region in Uy . Now it is

known (Niederreiter 1978, p. 982) that for integration over an arbitrary

P S AL DY RPN L. Y . . LR I S P AP WPyt
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region in Uy
&g < Cy (pR)L/N (36)

vhere cﬁ’ i8 a function of N . This is a considerably weaker bound but since
it applies to such a wider set of regions in Uy than (33) does there is
reason to believe that the use of the Hammersley and Halton sequences can lead
to accelerated convergence.

The fourth {ssue concerns boundedness. In the case(of estimating F*(t)
and Fa(t) , this assumption is met. However, it is not met for ET* and
ET* . This fact together with the integration over a restricted region in Uy
makes clear that when we move from theory to practice, some'skepticism exists
as to how efficient our approach will be. As the examples in Section 8 show,
there is little basis for this skepticism.

The fifth issue relates to dimensionality. As Theorems 5 and 6 make
clear, it 18 i{n one's best interest to reduce dimensionality as much as
possible before using quasirandom points. The cutset approach together
with convolution are the methods we use to effect this reduction.

The sixth issue of significance concerns the choice between the
Hammersley (finite) and Halton (infinite) sequences in practice. If one uses
the Hammersley sequence for fixed K and then decides that the accuracy is
not acceptable, there 1s no recourse to continued exploitation of its special
structure since 0,1/K,...,(K-1)/K are the values in the Nth dimension. By
contrast, the Halton sequence enables us to continue exploitation by merely
generating additional points {¢Rl(j),...,¢gu(j)} =k, k+l,... . The modest

degradation in the upper bound that arises when using the Halton rather than

m ey S
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the Hammersley sequence seems worth the price.

7. Experimental Design

This section describes the layout for an experiment designed to determine
the extent to which quasirandom points lead to accelerated accuracy
wheﬁ estimating F*(t) , ET* , Pa(t) and ETx for the networks in Pigs. 1
and 2 . In particular, we introduce a degree of randomness iato the
experiment in order to compute estimates of the variances of our point
estimates. We then study the behavior of these sample varfances as K
increases.

t<usider an experiment consisting of Q statistically independent blocks

or macroreplications each of K microreplications. Let fUim: i=1,...,N;

m=l,...,Q} denote a sequence of i.1.d. random variables from ([0,1) and

define ,
Sim = (s: ¢Ry(8) = Utn) i=1,...,N ==1,...,Q . (37)

Then on macroreplication m we use the quasirandom point
R (Sim + §1),...,¢Ry(SNm + J1) on microreplication 3 j=1,...,K .
Let ejn denote the unbiased estimate of a particular quantity ©

computed on microreplication j on macroreplication m . Then 51,...,§Q,

where
1 ¢k =~
W= 23-1 04m - m=l,...,Q , (38)
are i{.i.d. random variables with sample variance
2 1 =
o F 2:-1 (8 - aq)z (39)

vhere
hrg e

It is the behavior of lﬁ versus K that interests us.
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To provide an instructive normalization we also run M statistically

independent macroreplications each of K=1 microreplication. Let 61,...,§1

denote the resulting estimates of 0 each with sample variance
2 _ 1 oM a_ 2
Vo " T Lo (8 B (40)

where

Then the quantity u% /Ks% should increase as K 1{increases 1{f accelerated
convergence {s occurring.

We set M=10% . For the quasirandom case we perform runs for K-Zj .
3=1,2,... and set Q=216/k for R<29 and Q=27 for K>29 . Following this
procedure enables us to treat s% and wﬁ as highly reliable point

- -

estimators of the quantities var 6, and var 6, respectively.

8. Examples

We refer to the network in Fig. 1 as the SPS network and to the one in
Fig. 2 as the Battersby network. Table 2 lists the relevant cutsets and

noncutsets. In both examples the arc passage times are assumed independent

Insert Table 2 about here.

and exponentially distributed. For the SPS network the means are X1=10 .
=15 , \3=18 , =6 , As=7 , A¢=3 , A7=10 and )g=2 . For arc 1 on
microreplication j on macroreplication m the arc passage time is

Xy = G1(dR;(S1m + 31)) = -2qln(l - 4g,(Sgm + 1)) . (41)
For the runs using quasirandom points, the cutset H=(e2, e3, e4, e7) was

used reducing dimensionality to N-|H| = 8-4=4 . An algorithm due to Halton

R T L A L TR, Y
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gl and Smith (1964) was used to compute the Halton sequences. For the M
8 independent microreplications all N arc times from (41) were ﬁsed.
Table 3 shows the behavior of uﬁ/&:% for F*(t) estimated at
t=15, 30, 40, 50, 70 for ET* , for Fa(t) estimated at t=5, 10, 15, 20, 25

and for ETx . As a point for comparison, Sigal, Pritsker and Solberg (1979)

Insert Table 3 about here.

report variance reductions ranging from 4.18 to 11.00 for the estimation
of F*(t) at t=15, 30, 40, SO and 70 using the cutset i and independent
microreplications.

The second example studies variance reduction for the Battersby network
using the means in Table 1. Two separate sets of experiments were run. The
first set uses partition 1 in Table 2 with the cutset gH=(ez, e3, e5, eg,
e9, e10, e12) with quasirnhdom points, yielding a dimensionality of
N-|#|=11 . The second set uses partition 2 with the cutset H=(e2, e3, &g,
e + e15, €9, e10, e12) ylelding a dimensionality of 6 after appropriate
convolution within the noncutset. The quantity F*(t) was estimated for
t=90, 110, 120, 130, 140, 150, 160, 180, 190 and Fa(t) for t=20, 25, 30,
35, 40, 50, 60, 80, 90 . Table 4 ghows the resulting variance reductions
wi/Keg for F*(t) ; ET* , Pa(t) and ET* .

Insert Table 4 about here.
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Tables 3 and 4 admit several instructive observations:
1. As K 1increases variance reduction increases; however,
variance reduction is not necessarily monotone in K.

4. Por given K , variance reduction tends to decline with

increasing dimensionality.

3. For given K variance reduction is greater for F*(t) than

for ET* and for Fa(t) than for ET# , showing the benefit
one obtains from bounded integrands.

Although these observations establish the benefits of using quasirandoa
points with the cutset approach and convolution, there is a cost issue that
also needs to be considered. 1If one coampares the cost of producing one sample
point for F*(t) , ET* , Fa(t) and ET* using quasirandom points to the
cost of producing a sample point using pure random sampling, the ratio never
exceeds 2.5 1in our experiments. The most costly step turns out to be
sampling the summed arc times Xx{ + xj , in the noncutset of partitiou 2 in
Table 2, from the distribution function
e-lit e-th

AR S vy Vi e vy

This was done using the Newton-Raphson method.

Since this cost ratio is independent of K , we have strong evidence
that for sufficiently large K , the quasirandom point method offers a clear
advantage over pure random sampling for networks of arbitrary size. A prograam
called NETWOK is currently under development to implement the proposed method

in a computationally efficient manner.
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Appendix

Estimation of Pa(t). We derive the estimator based on the cutset H and

(22). Let

24§ = inf (S jm) 1eH
m=1l,...,L
ﬂim.i
and define

hy(t) =1 - My [ - Fi(t - 23] .
Then
hg(t) = 71(21;-1 hy(t)
gives an unbilased estimator of Fa(t) based on sampling from N - |H|
dimensions.
Estimation of ET* and ETs. Using (11) one has the unblased estimator
=g 1 )

for ET* . Let

Tag = min(T41,...,T4L) -
Then

Tag = 11ri§-1 Th

is an unbiased estimator of ETx .,

i
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> TABLE 1
} Incidence Matrix for Battersby Network
-g 8im
h Path o
- Arc 1 M 1 2 3 4 5. 6 7 8
- el 16 11
- €2 16 1
v e3 8 1
e 6 1 1
es 16 1 1
-, eg 40 1
: e7 24 1 1 1
eg 16 1 1
© 16 1
€10 24 1
e1l 8 1 1
% e12 4 1
e13 36 1 1 1
' 146 12 1
€15 8 1
€16 24 1 1 1
e17 8 1 1 1 1 1 1 1 1
3 e18 24 1 1 1 1 1 1 1 1
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Table 2

Network Analysis

Network Cutset Noncutset
Fig. 1 22, e3, e4, e7 e1, e5, e4, eg
Battersby (Fig. 2) e2, e3, e5, €6, e9, el0, el, e4, e7, eg, e11,
Partition 1
e12 e13, el4, e15, €16,
e17, e18
Battersby (Fig. 2) e2, e3, es, e + e15, €9, el + e4, e7 + e16,
Partition 2
e10, e12 eg + e11, e13, e14,
e17 + el8

e{ + ej = convolution of the d.fs. of arcs 1 and j .




Table 3

Variance Reduction w% /Ks% for the SPS Networkt

M=105 , N=8 , L=6 , |H|=4

K F*(t) ET* Fx(t) ET*
min max min max

2 42 106 7 46 196 8

22 53 96 9 44 345 9

23 74 101 12 53 773 11

24 87 177 17 125 957 19

25 111 258 23 149 1,285 24

26 146 701 27 313 2,722 36

27 248 1,066 51 534 2,984 45

28 365 1,409 83 710 3,183 51
i 29 383 2,426 130 1,527 5,323 123
ii 210 987 4,612 153 2,197 4,512 138
fo 211 | 1,000 5,221 266 3,438 8,604 260
;f 212 1,518 11,341 338 5,391 13,213 303
g; 213 1,978 16,907 548 17,299 39,357 484
?: 214 | 3,289 51,709 1,258 | 27,943 63,234 838
éi tain and max for F*(t) denote, respectively, the minimal and maximal
;: variance reduction for t=15, 30, 40, 50, 70 . min and max for Fa(t)
t:? denote, respectively, the minimal and maximal variance reduction for
o t=S, 10, 15, 20, 25 .
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Figure 1. SPS Network

Figure 2. Battersby Network
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